Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332807

RESUMO

Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.


Assuntos
Agrobacterium tumefaciens , Quimiotaxia , Agrobacterium tumefaciens/genética , Quimiotaxia/genética , Tumores de Planta/microbiologia , Plantas , Globinas
2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003719

RESUMO

Microorganism-based methods have been widely applied for the treatment of phenol-polluted environments. The previously isolated Acinetobacter lwoffii NL1 strain could completely degrade 0.5 g/L phenol within 12 h, but not higher concentrations of phenol. In this study, we developed an evolutionary strain NL115, through adaptive laboratory evolution, which possessed improved degradation ability and was able to degrade 1.5 g/L phenol within 12 h. Compared with that of the starting strain NL1, the concentration of degradable phenol by the developed strain increased three-fold; its phenol tolerance was also enhanced. Furthermore, comparative genomics showed that sense mutations mainly occurred in genes encoding alkyl hydroperoxide reductase, phenol hydroxylase, 30S ribosomal protein, and mercury resistance operon. Comparative transcriptomics between A. lwoffii NL115 and NL1 revealed the enrichment of direct degradation, stress resistance, and vital activity processes among the metabolic responses of A. lwoffii adapted to phenol stress. Among these, all the upregulated genes (log2fold-change > 5) encoded peroxidases. A phenotypic comparison of A. lwoffii NL1 and NL115 found that the adapted strain NL115 exhibited strengthened antioxidant capacity. Furthermore, the increased enzymatic activities of phenol hydroxylase and alkyl hydroperoxide reductase in A. lwoffii NL115 validated their response to phenol. Overall, this study provides insight into the mechanism of efficient phenol degradation through adaptive microbial evolution and can help to drive improvements in phenol bioremediation.


Assuntos
Fenóis , Transcriptoma , Fenol/metabolismo , Biodegradação Ambiental , Genômica , Peroxirredoxinas/metabolismo
3.
Res Microbiol ; 174(3): 104011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36455782

RESUMO

Agrobacterium fabrum is a phytopathogen that causes the crown gall disease. Some plant-derived molecules, e.g. phenols, directly affect A. fabrum-plant interactions. Here, we characterize a phenolic catabolism-related gene, atu1420, that affects the pathogenicity of A. fabrum. Atu1420 is predicted to be an O-demethylase with high structural homology to Sphingomonas paucimobilis LigM. The HPLC-UV analysis showed that atu1420 affected the degradation of acetosyringone (AS). The deletion of atu1420 gene significantly enhanced the AS-induced virulence (vir) gene expression. atu1420 was shown to relieve the inhibitory effect of vanillic acid on the AS-induced vir gene expression and the growth of A. fabrum. The expression of atu1420 and the degradation of AS in A. fabrum C58 was up-regulated by the addition of indole acetic acid (IAA). The inhibitory effect of IAA on the AS-induced vir gene expression was partially relieved by the deletion of atu1420 gene, indicating that accelerating the degradation of AS is one of the ways that IAA inhibits vir genes induction. Furthermore, atu1420 mutant produced more pronounced tumors on kalanchoe leaves than the wild-type strain. These findings reveal the role of atu1420 in A. fabrum-host interactions and will broaden our understanding of the regulatory network of the interactions.


Assuntos
Agrobacterium , Fenóis , Virulência/genética , Fenóis/farmacologia , Fenóis/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Agrobacterium tumefaciens/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Biotechnol Adv ; 61: 108057, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328189

RESUMO

Bacterioferritin (Bfr) is a subfamily of ferritin protein family. Bfrs are composed of 24 identical subunits and self-assemble into 4-3-2-fold symmetric cage-like structure with the incorporation of 12 heme groups into twelve 2-fold symmetric binding sites between subunits. Bfr protein cage has an outer diameter of ∼12 nm and interior cavity diameter of ∼8 nm with a total of 62 pores to connect the interior cavity with the bulk solution outside the protein nanocage. In vivo, the interior cavity of Bfr can store up to ∼2700 iron atoms in the ferrihydrite-like mineral. Recent years, more and more Bfr structures have been solved, which elucidated more details about the ferroxidase center, the catalytic mechanism, the possible channels used by iron ions to access the interior cavity, the electron transfer pathway involved in the iron redox cycle, and the molecular function of the heme group. The preliminary applications of both mammalian and bacterial ferritins in drug delivery, imaging diagnosis, and nanoparticle vaccine make Bfr exploration uniquely attractive for researchers from a broad range of research fields because Bfr has advantages over ferritins in controlling the self-assembly and redesigning the subunit. In this article, we outline the structure of Bfr, review the recent progress in the molecular mechanism of Bfr to store and release iron, and focus on the self-assembly and genetic modification of Bfr nanocage. Based on the comparison between Bfr and other ferritin family members, we further discuss the potential applications of Bfr. We expect that both fundamental and applied researches on Bfr will attract broad interest in protein nanocage design, nanomedicine, precise therapy, nanoparticle vaccine, bionanotechnology, bionanoelectronics, and so on.


Assuntos
Grupo dos Citocromos b , Ferritinas , Animais , Ferro , Heme , Mamíferos
5.
Biology (Basel) ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34943260

RESUMO

Soil-born plant pathogens, especially Agrobacterium, generally navigate their way to hosts through recognition of the root exudates by chemoreceptors. However, there is still a lack of appropriate identification of chemoreceptors and their ligands in Agrobacterium. Here, Atu0526, a sCache-type chemoreceptor from Agrobacterium fabrum C58, was confirmed as the receptor of a broad antibacterial agent, formic acid. The binding of formic acid to Atu0526 was screened using a thermo shift assay and verified using isothermal titration calorimetry. Inconsistent with the previously reported antimicrobial properties, formic acid was confirmed to be a chemoattractant to A. fabrum and could promote its growth. The chemotaxis of A. fabrum C58 toward formic acid was completely lost with the knock-out of atu0526, and regained with the complementation of the gene, indicating that Atu0526 is the only chemoreceptor for formic acid in A. fabrum C58. The affinity of formic acid to Atu0526LBD significantly increased after the arginine at position 115 was replaced by alanine. However, in vivo experiments showed that the R115A mutation fully abolished the chemotaxis of A. fabrum toward formic acid. Molecular docking based on a predicted 3D structure of Atu0526 suggested that the arginine may provide "an anchorage" for formic acid to pull the minor loop, thereby forming a conformational change that generates the ligand-binding signal. Collectively, our findings will promote an understanding of sCache-type chemoreceptors and their signal transduction mechanism.

6.
Microorganisms ; 9(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576817

RESUMO

Chemoreceptor (also called methyl-accepting chemotaxis protein, MCP) is the leading signal protein in the chemotaxis signaling pathway. MCP senses and binds chemoeffectors, specifically, and transmits the sensed signal to downstream proteins of the chemotaxis signaling system. The genome of Agrobacterium fabrum (previously, tumefaciens) C58 predicts that a total of 20 genes can encode MCP, but only the MCP-encoding gene atu0514 is located inside the che operon. Hence, the identification of the exact function of atu0514-encoding chemoreceptor (here, named as MCP514) will be very important for us to understand more deeply the chemotaxis signal transduction mechanism of A. fabrum. The deletion of atu0514 significantly decreased the chemotactic migration of A. fabrum in a swim plate. The test of atu0514-deletion mutant (Δ514) chemotaxis toward single chemicals showed that the deficiency of MCP514 significantly weakened the chemotactic response of A. fabrum to four various chemicals, sucrose, valine, citric acid and acetosyringone (AS), but did not completely abolish the chemotactic response. MCP514 was localized at cell poles although it lacks a transmembrane (TM) region and is predicted to be a cytoplasmic chemoreceptor. The replacement of residue Phe328 showed that the helical structure in the hairpin subdomain of MCP514 is a direct determinant for the cellular localization of MCP514. Single respective replacements of key residues indicated that residues Asn336 and Val353 play a key role in maintaining the chemotactic function of MCP514.

7.
Front Microbiol ; 12: 725755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566929

RESUMO

Phenol is a common environmental contaminant. The purpose of this study was to isolate phenol-degrading microorganisms from wastewater in the sections of the Chinese Medicine Manufactory. The phenol-degrading Acinetobacter lwoffii NL1 was identified based on a combination of biochemical characteristics and 16S rRNA genes. To analyze the molecular mechanism, the whole genome of A. lwoffii NL1 was sequenced, yielding 3499 genes on one circular chromosome and three plasmids. Enzyme activity analysis showed that A. lwoffii NL1 degraded phenol via the ortho-cleavage rather than the meta-cleavage pathway. Key genes encoding phenol hydroxylase and catechol 1,2-dioxygenase were located on a megaplasmid (pNL1) and were found to be separated by mobile genetic elements; their function was validated by heterologous expression in Escherichia coli and quantitative real-time PCR. A. lwoffii NL1 could degrade 0.5 g/L phenol within 12 h and tolerate a maximum of 1.1 g/L phenol, and showed resistance against multiple antibiotics and heavy metal ions. Overall, this study shows that A. lwoffii NL1 can be potentially used for efficient phenol degradation in heavy metal wastewater treatment.

8.
Microorganisms ; 9(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074050

RESUMO

The chemotactic response regulator CheY, when phosphorylated by the phosphoryl group from phosphorylated CheA, can bind to the motor switch complex to control the flagellar motor rotation. Agrobacterium fabrum (previous name: Agrobacterium tumefaciens), a phytopathogen, carries two paralogous cheY genes, cheY1 and cheY2. The functional difference of two paralogous CheYs remains unclear. Three cheY-deletion mutants were constructed to test the effects of two CheYs on the chemotaxis of A.fabrum. Phenotypes of three cheY-deletion mutants show that deletion of each cheY significantly affects the chemotactic response, but cheY2-deletion possesses more prominent effects on the chemotactic migration and swimming pattern of A. fabrum than does cheY1-deletion. CheA-dependent cellular localization of two CheY paralogs and in vitro pull-down of two CheY paralogs by FliM demonstrate that the distinct roles of two CheY paralogs arise mainly from the differentiation of their binding affinities for the motor switch component FliM, agreeing with the divergence of the key residues on the motor-binding surface involved in the interaction with FliM. The single respective replacements of key residues R93 and A109 on the motor-binding surface of CheY2 by alanine (A) and valine (V), the corresponding residues of CheY1, significantly enhanced the function of CheY2 in regulating the chemotactic response of A. fabrum CheY-deficient mutant Δy to nutrient substances and host attractants. These results conclude that the divergence of the key residues in the functional subdomain is the decisive factor of functional differentiation of these two CheY homologs and protein function may be improved by the substitution of the divergent key residues in the functional domain for the corresponding residues of its paralogs. This finding will help us to better understand how paralogous proteins sub-functionalize. In addition, the acquirement of two CheY2 variants, whose chemotactic response functions are significantly improved, will be very useful for us to further explore the mechanism of CheY to bind and regulate the flagellar motor and the role of chemotaxis in the pathogenicity of A. fabrum.

9.
Mol Plant Pathol ; 22(3): 348-360, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33433944

RESUMO

The plant pathogen Agrobacterium tumefaciens causes crown gall disease and is a widely used tool for generating transgenic plants owing to its virulence. The pathogenic process involves a shift from an independent to a living form within a host plant. However, comprehensive analyses of metabolites, genes, and reactions contributing to this complex process are lacking. To gain new insights about the pathogenicity from the viewpoints of physiology and cellular metabolism, a genome-scale metabolic model (GSMM) was reconstructed for A. tumefaciens. The model, referred to as iNX1344, contained 1,344 genes, 1,441 reactions, and 1,106 metabolites. It was validated by analyses of in silico cell growth on 39 unique carbon or nitrogen sources and the flux distribution of carbon metabolism. A. tumefaciens metabolic characteristics under three ecological niches were modelled. A high capacity to access and metabolize nutrients is more important for rhizosphere colonization than in the soil, and substantial metabolic changes were detected during the shift from the rhizosphere to tumour environments. Furthermore, by integrating transcriptome data for tumour conditions, significant alterations in central metabolic pathways and secondary metabolite metabolism were identified. Overall, the GSMM and constraint-based analysis could decode the physiological and metabolic features of A. tumefaciens as well as interspecific interactions with hosts, thereby improving our understanding of host adaptation and infection mechanisms.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/metabolismo , Tumores de Planta/microbiologia , Transcriptoma , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/genética , Redes e Vias Metabólicas , Plantas Geneticamente Modificadas , Virulência/genética
10.
Microb Genom ; 6(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33118922

RESUMO

Agrobacterium tumefaciens is an efficient tool for creating transgenic host plants. The first step in the genetic transformation process involves A. tumefaciens chemotaxis, which is crucial to the survival of A. tumefaciens in changeable, harsh and even contaminated soil environments. However, a systematic study of its chemotactic signalling pathway is still lacking. In this study, the distribution and classification of chemotactic genes in the model A. tumefaciens C58 and 21 other strains were annotated. Local blast was used for comparative genomics, and hmmer was used for predicting protein domains. Chemotactic phenotypes for knockout mutants of ternary signalling complexes in A. tumefaciens C58 were evaluated using a swim agar plate. A major cluster, in which chemotaxis genes were consistently organized as MCP (methyl-accepting chemotaxis protein), CheS, CheY1, CheA, CheR, CheB, CheY2 and CheD, was found in A. tumefaciens, but two coupling CheW proteins were located outside the 'che' cluster. In the ternary signalling complexes, the absence of MCP atu0514 significantly impaired A. tumefaciens chemotaxis, and the absence of CheA (atu0517) or the deletion of both CheWs abolished chemotaxis. A total of 465 MCPs were found in the 22 strains, and the cytoplasmic domains of these MCPs were composed of 38 heptad repeats. A high homology was observed between the chemotactic systems of the 22 A. tumefaciens strains with individual differences in the gene and receptor protein distributions, possibly related to their ecological niches. This preliminary study demonstrates the chemotactic system of A. tumefaciens, and provides some reference for A. tumefaciens sensing and chemotaxis to exogenous signals.


Assuntos
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Quimiotaxia/genética , Proteínas Quimiotáticas Aceptoras de Metil/genética , Sequência de Aminoácidos/genética , Simulação por Computador , Genoma Bacteriano/genética , Filogenia , Plantas/microbiologia , Alinhamento de Sequência , Transdução de Sinais/genética
11.
Mol Plant Pathol ; 21(9): 1167-1178, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32678502

RESUMO

Ferritins are a large family of iron storage proteins, which are used by bacteria and other organisms to avoid iron toxicity and as a safe iron source in the cytosol. Agrobacterium tumefaciens, a phytopathogen, has two ferritin-encoding genes: atu2771 and atu2477. Atu2771 is annotated as a Bfr-encoding gene (Bacterioferritin, Bfr) and atu2477 as a Dps-encoding gene (DNA binding protein from starved cells, Dps). Three deletion mutants (Δbfr, Δdps, and bfr-dps double-deletion mutant ΔbdF) of these two ferritin-encoding genes were constructed to investigate the effects of ferritin deficiency on the iron homeostasis, oxidative stress resistance, and pathogenicity of A. tumefaciens. Deficiency of two ferritins affects the growth of A. tumefaciens under iron starvation and excess. When supplied with moderate iron, the growth of A. tumefaciens is not affected by the deficiency of ferritin. Deficiency of ferritin significantly reduces iron accumulation in the cells of A. tumefaciens, but the effect of Bfr deficiency on iron accumulation is severer than Dps deficiency and the double mutant ΔbdF has the least intracellular iron content. All three ferritin-deficient mutants showed a decreased tolerance to 3 mM H2 O2 in comparison with the wild type. The tumour induced by each of three ferritin-deficient mutants is less than that of the wild type. Complementation reversed the effects of ferritin deficiency on the growth, iron homeostasis, oxidative stress resistance, and tumorigenicity of A. tumefaciens. Therefore, ferritin plays an important role in the pathogenesis of A. tumefaciens through regulating iron homeostasis and oxidative stress survival.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Agrobacterium tumefaciens/patogenicidade , Agrobacterium tumefaciens/fisiologia , Proteínas de Bactérias/genética , Grupo dos Citocromos b/genética , Ferritinas/genética , Peróxido de Hidrogênio/metabolismo , Mutação , Estresse Oxidativo , Virulência
12.
Microbiol Res ; 219: 40-48, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642465

RESUMO

In most signal transduction systems, coupling or scaffold proteins establish crucial connections between receptors and histidine kinases. These connections are important for signal transduction. The bacterial chemotaxis system is a canonical signal transduction system that relies on coupling proteins. The coupling proteins in the chemotaxis system have two architectures: CheW or CheV. In a typical chemotaxis signal transduction system, two CheW coupling protein molecules bridge a histidine kinase CheA dimer and two chemoreceptor (also called as methyl-accepting chemotaxis protein, MCP) trimers of dimers to form a core signaling complex and couple CheA activity to chemoreceptor control. Although CheW is a small cytoplasmic protein, it plays multiple functions in chemotaxis. CheW also builds connections between core signaling complexes, which leads to the formation of large chemosensory arrays that are responsible for collecting and amplifying signals from various chemoreceptors. Another coupling protein, CheV, shares a largely redundant ability with CheW; however, the function of CheV is not identical to that of CheW in chemotaxis. In this article, we summarize the molecular mechanism of chemotaxis in Escherichia coli and review the recent advances in the structural details and functions of CheW and CheV. Furthermore, we focus on the diversity of coupling proteins and discuss the relationship among multiple coupling proteins in one organism.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Fatores Quimiotáticos/genética , Escherichia coli/genética , Fosforilação , Transdução de Sinais/fisiologia
13.
Biotechnol Adv ; 37(1): 259-270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30579929

RESUMO

The extraordinary capacity of Agrobacterium to transfer its genetic material to host cell makes it evolve from phytopathogen to a powerful transgenic vector. Agrobacterium-mediated stable transformation is widely used as the preferred method to create transgenic plants for molecular plant biology research and crop breeding. Recent years, both mechanism and application of Agrobacterium-mediated horizontal gene transfer have made significant progresses, especially Agrobacterium-mediated transient transformation was developed for plant biotechnology industry to produce recombinant proteins. Agrobacterium strains are almost used and saved not only by each of microbiology and molecular plant labs, but also by many of plant biotechnology manufacturers. Agrobacterium is able to transfer its genetic material to a broad range of hosts, including plant and non-plant hosts. As a consequence, the concern of environmental risk associated with the accidental release of genetically modified Agrobacterium arises. In this article, we outline the recent progress in the molecular mechanism of Agrobacterium-meditated gene transfer, focus on the application of Agrobacterium-mediated horizontal gene transfer, and review the potential risk associated with Agrobacterium-meditated gene transfer. Based on the comparison between the infecting process of Agrobacterium as a pathogen and the transgenic process of Agrobacterium as a transgenic vector, we realize that chemotaxis is the distinct difference between these two biological processes and thus discuss the possible role of chemotaxis in forestalling the potential risk of Agrobacterium-meditated horizontal gene transfer to non-target plant species.


Assuntos
Agrobacterium/genética , Biotecnologia/tendências , Técnicas de Transferência de Genes/tendências , Plantas Geneticamente Modificadas/genética , Transformação Genética
14.
Mol Plant Microbe Interact ; 31(4): 460-470, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29182466

RESUMO

Agrobacterium tumefaciens is the agent that causes crown gall tumor disease on more than 140 species of dicotyledonous plants. Chemotaxis of A. tumefaciens toward the wound sites of the host plant is the first step to recognize the host. CheW is a coupling protein that bridges the histidine kinase CheA and the chemoreceptors to form the chemotaxis core signaling complex and plays a crucial role in the assembly and function of the large chemosensory array. Unlike all previously reported chemotaxis systems, A. tumefaciens has only one major che operon but two cheW homologs (atu2075 as cheW1 and atu2617 as cheW2) on unlinked loci. The in-frame deletion of either cheW gene significantly affects A. tumefaciens chemotaxis but does not abolish the chemotaxis, unless both cheW genes were deleted. The effect of cheW2 deletion on the chemotaxis is more severe than that of cheW1 deletion. Either CheW can interact with CheA and couple it to the cell poles. The promoter activity of cheW2 is always higher than that of cheW1 under all of the tested conditions. When two cheW genes were adjusted to the same expression level by using the identical promoter, the difference between the effects of two CheW proteins on the chemotaxis still existed. Therefore, we envision that both the different molecular ratio of two CheW proteins in cell and the different affinities of two CheW proteins with CheA and chemoreceptors result in the efficiency difference of two CheW proteins in functioning in the large chemosensory array.


Assuntos
Agrobacterium tumefaciens/citologia , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Quimiotaxia , Transdução de Sinais , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quimiotaxia/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Transdução de Sinais/genética , Homologia Estrutural de Proteína
15.
Biotechnol Adv ; 35(4): 505-511, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28342941

RESUMO

Agrobacterium tumefaciens, a soil-born phytopathogenic bacterium, is well known as a nature's engineer due to its ability to genetically transform the host by transferring a DNA fragment (called T-DNA) from its Ti plasmid to host-cell genome. To combat the harsh soil environment and seek the appropriate host, A. tumefaciens can sense and be attracted by a large number of chemical compounds released by wounded host. As a member of α-proteobacterium, A. tumefaciens has a chemotaxis system different from that found in Escherichia coli, since many chemoattractants for A. tumefaciens chemotaxis are virulence (vir) inducers. However, advances in the study of the chemotaxis paradigm, E. coli chemotaxis system, have provided enough information to analyze the A. tumefaciens chemotaxis. At low concentration, chemoattractants elicit A. tumefaciens chemotaxis and attract the species to the wound sites of the host. At high concentration, chemoattractants induce the expression of virulence genes and trigger T-DNA transfer. Recent studies on the VirA and ChvE of the vir-induction system provide some evidences to support the crosstalk between chemotaxis and vir-induction. This review compares the core components of chemotaxis signaling system of A. tumefaciens with those observed in other species, discusses the connection between chemotaxis and vir-induction in A. tumefaciens, and proposes a model depicting the signaling crosstalk between chemotaxis and vir-induction.


Assuntos
Agrobacterium tumefaciens , Quimiotaxia , Transdução de Sinais , Virulência
16.
Bioengineered ; 7(6): 406-410, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27333274

RESUMO

Lysin motif (LysM) is a highly conserved carbohydrate binding module that is widely present in proteins from both prokaryotes and eukaryotes. LysM domains from many LysM-containing proteins can be taken out of their natural context and retain their ability to bind peptidoglycan. Therefore, LysM has enormous potential for applications in both industry and medicine. This potential has stimulated an intensive search for LysM modules with different evolutionary origins. The p60 protein (Lm-p60) is an NlpC/P60-containing peptidoglycan hydrolase secreted by Listeria monocytogenes. The N-terminus of Lm-p60 contains 2 LysM modules separated by an SH3 module. Our recent study of Lm-p60 demonstrates that the N-terminal half of Lm-p60, comprised of 2 LysM and 1 SH3 module, is able to recognize and bind peptidoglycan. The LysM domain of Lm-p60 contains only 2 LysM modules, which is the minimum number of LysM modules in most NlpC/P60-containing proteins, but it shows strong affinity for peptidoglycan. Moreover, these 2 LysM modules have only 38.64% similarity to each other. These data allowed us to conclude that the 2 LysM modules from Lm-p60 have different evolutionary origins, suggesting that they are suitable candidate peptidoglycan-binding modules for protein engineering in order to create a protein with a high binding affinity to peptidoglycan.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Peptidoglicano/metabolismo , Domínios Proteicos , Engenharia de Proteínas , Ligação Proteica
17.
Front Microbiol ; 6: 1379, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696988

RESUMO

The proteins encoded by three Agrobacterial genes, atu5117, atu4860, and atu4856, are highly homologous to each other in amino acid sequence. All three proteins can bind to VirD2 and are named VBP1, VBP2, and VBP3 (VirD2-binding protein), respectively. VBP is involved in T-DNA transfer by recruiting the T-complex from the cytosol to the polar transport apparatus T4SS (type IV secretion system) and is defined as the "T-complex recruiting protein." However, it remains unknown how these three homologous genes co-exist in a relatively small prokaryotic genome. To understand whether these three homologous genes are expressed differentially under virulence induction conditions, we examined the effects of virulence induction conditions, including various pH values, temperatures and acetosyringone (AS, an effective virulence inducer to Agrobacterium tumefaciens) concentrations, on the expression of the three VBP-encoding genes. Our data showed that vbp1 (atu5117) and vbp3 (atu4856) maintained constant expression under the tested induction conditions, whereas the expression of vbp2 (atu4860) was affected by the conditions. Culture conditions favorable to the expression of vbp2 differed from the reported induction conditions for other virulence proteins. In particular, the pH value was a crucial factor for the expression of vbp2. In addition, the deletion of vbp1 affected the expression of vbp2. Taken together, these results suggest that the mechanisms regulating the expression of these three homologous genes are different from the virulence induction mechanism and that VBP homologs are presumably involved in other biological processes in addition to T-complex recruitment.

18.
Appl Microbiol Biotechnol ; 99(24): 10527-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363556

RESUMO

The major extracellular protein p60 of Listeria monocytogenes (Lm-p60) is an autolysin that can hydrolyze the peptidoglycan of bacterial cell wall and has been shown to be required for L. monocytogenes virulence. The predicted three-dimensional structure of Lm-p60 showed that Lm-p60 could be split into two independent structural domains at the amino acid residue 270. Conserved motif analysis showed that V30, D207, S395, and H444 are the key amino acid residues of the corresponding motifs. However, not only the actual functions of these two domains but also the catalytic properties of Lm-p60 are unclear. We try to express recombinant Lm-p60 and identify the functions of two domains by residue substitution (V30A, D207A, S395A, and H444A) and peptide truncation. The C-terminal domain was identified as catalytic element and N-terminal domain as substrate recognition and binding element. Either N-terminal domain truncation or C-terminal domain truncation presents corresponding biological activity. The catalytic activity of Lm-p60 with a malfunctioned substrate-binding domain was decreased, while the substrate binding was not affected by a mulfunctioned catalytic domain. With turbidimetric method, we determined the optimal conditions for the bacteriolytic activity of Lm-p60 against Micrococcus lysodeikficus. The assay for the effect of Lm-p60 on the bacteriolytic activity of lysozyme revealed that the combined use of Lm-p60 protein with lysozyme showed a strong synergistic effect on the bacteriolytic activity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriólise , Listeria monocytogenes/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Estrutura Terciária de Proteína , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Análise Mutacional de DNA , Hidrólise , Micrococcus/efeitos dos fármacos , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo , Deleção de Sequência
19.
FEBS J ; 280(19): 4865-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23902381

RESUMO

Atu5117 from Agrobacterium tumefaciens is a highly conserved protein with a putative nucleotidyltransferase domain in its N-terminal region and a putative higher eukaryotes and prokaryotes nucleotide-binding domain in its C-terminal region. This protein has been shown to be a T-complex-recruiting protein that can recruit T-complex from the cytosol to the polar VirB/D4 type IV secretion system (T4SS). However, the biochemical function of Atu5117 is still unknown. Here, we show that Atu5117 is a (d)NTPase. Although no proteins with nucleotidyltransferase and higher eukaryotes and prokaryotes nucleotide-binding domains were identified as (d)NTPases, Atu5117 was able to convert all eight canonical NTPs and dNTPs to NDP, dNDP and inorganic phosphate in vitro, and required Mg(2+) for its (d)NTPase activity. The kinetic parameters of Atu5117 (d)NTPase for eight substrates were characterized. Kinetic data showed that Atu5117 (d)NTPase preferred ATP as its substrate. The optimal conditions for (d)NTPase activity of Atu5117 were very similar to those required for Agrobacterium tumorigenesis. The kinetic parameters of (d)NTPase of Atu5117 for all four canonical NTPs were in the same orders of magnitude as the kinetic parameters of the ATPases identified in some components of the VirB/D4 T4SS. These results suggest that Atu5117 might function as an energizer to recruit T-complex to the T4SS transport site.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Especificidade por Substrato
20.
Proc Natl Acad Sci U S A ; 104(50): 20019-24, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18056647

RESUMO

Bacterial type IV secretion system (T4SS) belongs to a growing class of evolutionarily conserved transporters that translocate DNA and proteins into a wide variety of organisms including bacterial and eukaryotic cells. Archetypal is the Agrobacterium tumefaciens VirB/D4 T4SS that transfers oncogenic T-DNA to various eukaryotic cells, which is transferred as a nucleoprotein T-complex with VirD2 as the pilot protein. As a derivative of plasmid conjugation systems, the VirB/D4 T4SS can also transfer certain mobilizable plasmids and bacterial proteins like VirE2 and VirF, although it is unknown how the membrane-bound T4SS recruits different transfer substrates. Here, we show that a cytoplasmic VirD2-binding protein (VBP) is involved in the recruitment of the T-complex to the energizing components of the T4SS, including VirD4, VirB4, and VirB11. VBP is also important for the recruitment of a conjugative plasmid to a different transfer system independent of VirB/D4. These data indicate that VBP functions as a previously unrecognized recruiting protein that helps couple nucleoprotein substrates to the appropriate transport sites for conjugative DNA transfers. VBP has three functionally redundant homologs, and similar homologs can be found in different bacterial genomes, suggesting a previously uncharacterized class of proteins involved in conjugative DNA transfers.


Assuntos
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , DNA Bacteriano/genética , Agrobacterium tumefaciens/classificação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Sequência Conservada , Dados de Sequência Molecular , Mutação/genética , Plasmídeos/genética , Ligação Proteica , Alinhamento de Sequência , Treonina/genética , Treonina/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...